The Future of Tire Research

Multiscale Modeling of Rubber Friction under dry/ wet condition

Vadakkeveetil Sunish and Saied Taheri Center for Tire Research Organization, Virginia Tech RPUG Conference 2018

Agenda

- Introduction
- Background
- Analytical Approach
 - Single Scale Hysteretic Friction
 - Multiple Scale model Persson's Friction
- Model Input Parameters
- Simulation Results
- Friction under wet condition
- Conclusion

Motivation

• Resisting force at the contact interface

- Provides traction, control and stability to the vehicle
- Also results in rolling resistance and wear

Wear

Introduction

- Minimum force required for motion
- Friction when body sliding at steady state
- Microscopic observations shows the influence of plastic yielding and effective contact area [Bowden and Tabor]
- Static friction shows an increase with increase in time at rest due to plastic relaxation exhibiting memory or hysteretic effects [Rabinowicz]
- Dynamic friction has no universal behavior and is highly dependent on the material and the sliding velocity

Background on Rubber friction

- Two peaks: Hysteresis loses & Interfacial Adhesion
- Hysteresis: At higher velocities, deformation loses from undulations of surface, Vanishes for smooth surfaces
- Interfacial Adhesion: At low velocities, due to interfacial energy of the surface, stick-slip instability, vanishes for dusted surfaces

9/23/2018

Contact Mechanics Theories

- Study of deformation of the bodies occurring at the contact interface
- Surfaces smooth to the naked eyes have some level of roughness at higher length scales
- Roughness causes variation in real contact area, deformations and pressure distribution at the contact interface
- Contact mechanics theories helps in estimating these contact parameters based on the operating condition and the surface profile

Background – Previous Contact Mechanics

- Frictional properties are highly dependent on contact properties especially penetration depth (1) and real contact area (2)
- Hertz Considered the point on elastic half space with no adhesion to obtain the contact mechanics parameters
- JKR Included the effect of adhesion to obtain the pull force required at the contact by minimizing the total energy

$$F_A = \frac{3}{2}\gamma_{12}\pi R$$

 Greenwood – Williamson – Considered the asperities to be spherical with height distribution, defined the GW function and obtained the parameters at contact

$$F_n(d) = \int_d^\infty (z-d)^n \,\phi_s(z) \,dz$$

Bush et al – Considers the asperities to be paraboloid and obtained the distribution of the curvature and height of asperities,

$$A = \kappa F_N \left(\int d^2 q \ q^2 C(q) \right)$$

9/23/2018

Analytical Approach

Single Scale Hysteretic Friction

- Asperities considered to be identical with similar wavelength
- Energy dissipated at the contact to the bulk of rubber obtained from the viscous losses (Loss modulus $Im(E(\omega))$)
- Related to the frictional energy losses at contact,

$$\Delta E = \sigma_f A_0 v t$$

Frequency is dependent on the sliding velocity and wavelength of the asperities

Single Scale friction

Model needs to be extended for roughness at different length scales

9/23/2018

Including Frictional Heating

- Energy dissipated due to friction leads to heat generation at the contact interface
- Increase in temperature at the contact interface effects the material properties
- Temperature rise is obtained by solving the heat diffusion relation

rubber small energy dissipation
$$\checkmark$$

large energy dissipation T_0 T_q T_q

Where,
$$f(q) = \frac{vq^4}{\rho C_v} C(q) \frac{P(q)}{P(q_m)} \int d\phi \cos \phi \ Im \frac{E(qv\cos \phi, T_q)}{1 - v^2}$$

 $g(q, q') = \frac{1}{\pi} \int_0^\infty dk \frac{1}{Dk^2} \left(1 - e^{-Dk^2 t_0}\right) \frac{4q'}{k^2 + 4q'^2} \frac{4q^2}{k^2 + 4q^2}$

• Temperature rise is calculated by considering the False Position iterative method with an initial guess for the temperature at different magnification

Model Input Parameters

Material Properties

- Frequency dependent material data is obtained using DMA data of Compound A*
- Large strain elastic modulus data is obtained using strain sweep measurements

Frequency Dependent Material Properties:

<u>Surface Roughness</u>

- Surface profiles is measured using Nanovea profilometer
- Measurement resolution $7\mu m$
- In this case, the surface is considered to be self affine

Nanovea Profilometer and Surface profile of 120 grit surface

Surface characterization of 120-grit and asphalt

1)

- Surface roughness power spectrum
 C(q) of the measured profiles are obtained
- Surface characteristics are obtained from the spectrum for a self affine surface

$$C(q) = \left(\frac{h_0}{q_0}\right)^2 \frac{H}{2\pi} \left(\frac{q}{q_0}\right)^{-2 (H+q_0)}$$

Surface Property	120 grit	Asphalt
$h_0(m)$	$7.5103 e^{-5}$	$3.74 e^{-4}$
D _{PSD}	2.2122	2.1855
$q_0(1/m)$	10 ^{3.3}	10 ^{2.7}
$q_1(1/m)$	10 ⁶	10 ⁶

12

Friction Predictions – Compound A on 120 grit

NSP

9/23/2018

13

120 grit vs asphalt surface

- Material: Compound A
- Surface Parameters:

Surface Property	120 grit	Asphalt	
h_0	7.6573 10 ⁻⁵	$3.3378 \ 10^{-4}$	
D_{PSD}	2.3	2.15	
q_0	10 ^{3.3}	10 ^{2.7}	

• Asphalt is smoother than 120 grit

9/23/2018

 Friction and temperature increase is higher in 120 grit than in asphalt

14

Surface Roughness Characterization for wet surface

120 Grit	Mean water depth (mm)	D _f	$h_0(mm)$	q ₀ (1/mm)
Dry	0	2.2122	7.51E - 02	5623.413
Wet1	0.234	2.154	5.11E - 02	5623.413
Wet2	0.134	2.1476	6.99 <i>E</i> – 02	5623.413

Asphalt	Mean water depth (mm)	D _f	$h_0(mm)$	$q_0(1/mm)$
Dry	0	2.1855	3.74E - 01	1000
Wet1	0.234	2.2033	2.15E - 01	1000
Wet2	0.134	2.1988	2.28E - 01	1000

Friction Results under Wet and Dry Condition

Conclusion

- Approach towards estimation of friction coefficient considering the surface roughness characteristics
- Temperature rise due to frictional heating results in reduction in friction coefficient
- Considering large strain material modulus showed an increase in friction results due to increase in the viscous losses
- Increase in surface roughness resulted increase in friction as observed in the comparison of 120 grit and asphalt surface
- Under wet condition, the valleys of the surface are filled with water causing the surface to smoothen out and the friction to reduce
- Future work will be focused on improvement of the model for different normal load condition and also validation of the wet friction results

Thank You Any Questions ?

