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Pavement Data Collection Types
Functional: Roughness (Longitudinal, IRI)
Surface Distresses

• Cracking
• Rutting
• Faulting, and others

Structural: Surface Deflection
• FWD，TSD，RWD，RAPTOR, et al

Safety: MPD, MTD, Various Friction Testing 
Devices per ASTM
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Data Collection Systems
Roughness：Relatively Mature
Surface Distresses: Not Fully Automated

• 3D Laser Imaging: 1mm，0.5mm，0.1mm?
Structural Evaluation: Evolving Rapidly

• Traditional FWD
• High-Speed: TSD，RWD，RAPTOR，Others

Safety
• Contact Now, and Non-Contact in the Future
• New 0.1mm 3D Laser Imaging System？

Ket to Solutions
• Software Implementations
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Ultimate Challenge: Cracking

Cracking: # 1 indicator of Pavement Distresses
Need: Cracking Detections and Classifications

• Pavement Design: Fatigue Models Rely on 
Accurate Cracking Data

• Pavement Management: Distress Prediction and 
Rehabilitation

Status: No Usable Technology in Full 
Automation for Cracking Detection
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Fatigue Cracking in ME Design

N: loading 
cycles to failure

Stress & Strain 
(σ, ε) at Asphalt 
Layer Bottom



30 years on the Road To Progressively Better Data30 years on the Road To Progressively Better Data

Cracking in Pavement Management

Critical in Assessing Condition for Both 

Roadways and Runways for Rehabilitation 

and Maintenance Needs

#1 Importance for Surface Condition Survey
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Accurate Cracking Data Thru Automation

Extreme Difficulty due to Complexity
Pavement Surface: A Highly Complicated 

Environment with Extensive Uncertainties
Distress Identification: Challenging Even for Well-

Trained Human Operators
Diverse Pavement Surface Texture
Presence of Various Pavement Distresses
Diversified protocols of cracking definitions
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Limitations, Traditional Algorithms

Simple Methodology & Specific Assumptions

• Not Fully Validated on Diverse Pavement 

Surfaces

Limited or Even No Learning Capabilities

• Inconsistent Precision & Bias Levels on 

Different Roads
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Common Failures, Traditional Method

• Inconsistent Accuracies for Pavement with Various Texture
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Common Failures, Traditional Method
Interference from Other Patterns
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Ultimate Objectives

Automated Crack Detection
Find the Actual Location of Distresses with Pixel-Perfect 

Accuracy
Automated Crack Classification
Label Distress Types
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3D Data at 60MPH (100KM/h)



30 years on the Road To Progressively Better Data30 years on the Road To Progressively Better Data

3D Data at 60MPH (100KM/h)
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3D Data at 60MPH (100KM/h)
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Goal of Automation: 

Location and Geometries of 
Cracking Information
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Traditional Artificial Neuron Net

Shallow Abstraction
Limited Number of Layers  & Neurons
Cannot Fully Reflect the Complexity of Problems

Limited Amount of Data

# of Neurons<104 # of Neurons=1011 (Human Brain)
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Deep Learning
Deep Abstraction

 # of Layers: 101-103

 Exploit Understanding on Complex Problems

Complex Connections Among Neurons
 # of Connections Per Neuron: 102-104

Enhanced Reliability
 Feed with Exhaustive Variations of Example Data
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Why Deep Learning?

Strong Learning Ability and Versatility
Enhanced Reliability through Continuing Learning
Knowledge Accumulation: as to Human Learning
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Shallow vs. Deep Networks

Error

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Deep Networks Shallow Networks
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Image Model of CNN: Learning Cognition

(Goodfellow et al., Deep Learning, 2016)
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DL Design for Pavement Cracking

DL Networks

Image Library

Real Pavement Data

Data Generator

Artificial Pavement Data 
with Unknown Variations

Field Tests

Software

Diverse Representative Surfaces

Real-time Processing

Generative Modeling
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Image Library: Basis of Learning

Data Type
 3D Pavement Data & 2D Pavement Images

Image Library Size
 2016-2017: 10,000 3D Images + 10,000 2D Images
 2017-2020: 50,000 3D Images + 50,000 2D Images

Ground Truth with Pixel-Perfect Accuracy
 Manually Marked or Verified

Diversity
 All Typical Variations of Pavement Distresses
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Typical Labeled Examples, Image Library
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CrackNet

Pixel-Level Accuracy

Concrete & Asphalt

Parallel Computing

Consistent Efficiency



30 years on the Road To Progressively Better Data30 years on the Road To Progressively Better Data

Traditional Algorithms vs. CrackNet

3D Images

Pixel-SVM

3D Shadow 
Modeling

DL based 
CrackNet
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CrackNet for Flexible Surfaces
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CrackNet for Rigid Surfaces

Jointed Surface

Grooved Surface
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CrackNet I

Convolutional Neural Network
7 Layers
1,159,561 Parameters
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CrackNet II

Convolutional Neural Network
10 Layers
42,571 Parameters
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CrackNet-V

Based on VGG
9 Layers
64,113 Parameters
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CrackNet-R

Recurrent Neural Network
Recurrent Unit: Gated Recurrent Unit (GRU)
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Performance Comparison

CrackNet I CrackNet II CrackNet-V CrackNet-R

83.89% 84.01%
82.95%

86.93%

89.41% 90.23%
92.19%

94.54%

86.57% 87.01% 87.34%

90.58%

Precision Recall F-measure

Precision=True Positive/(True Positive + False Positive): False Positive
Recall=True Positive/(True Positive + False Negative): False Negative
F-measure=2×Precision×Recall/(Precision + Recall): Composite
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Speed Comparison

0

0.5

1

1.5

2

2.5

3

CrackNet I CrackNet II CrackNet-V CrackNet-R

2.894

0.581 0.816 0.609

Processing Time (s)

Image Size: 1024×512
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Typical Performance of CrackNet-R
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An Example of CrackNet Effectiveness

PCI Data from A Large County in the US
Manual PCI (2106) & Fully Automated PCI ( CrackNet in 2018)
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Part Two

Work In Progress:
1. Generative Adversarial Networks (GANs)

2. Spatial Pyramid Pooling

3. New High-Performance Sensors from 1mm to 0.1mm
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Generative Adversarial Networks (GANs)

A class of artificial intelligence algorithms 
used in unsupervised machine learning
Implemented by a system of two neural 

networks contesting with each other in a 
zero-sum game framework
Can generate photographs superficially 

authentic to human observers

Goodfellow, et al (2014). "Generative Adversarial Networks"
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Basic GANs Structure
• Proposed by Ian J. Goodfellow et al. 2014

• Generator network (G)

• Discriminator network (D)

• G and D are competing against each other in a minmax game
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Principles of GANs

Generator Discriminator

Random Noise

Fake Data Real Data Fake Data Real Data

Fake Label Real Label
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GANs for Crack Detection

Generator Discriminator

Random Noise

Noise Pattern Crack Pattern Noise Pattern Crack Pattern

Noise Label Crack Label

Final Detector
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Basic GANs Structure for Cracking

• GAN Based Crack Generation

• GAN Based Noise Discriminator

• GAN Based Image Quality Enhancer
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GANs Applications
• Generate images

• Translate images
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Problem Statement I

• Generate Deep Learning Training Data

• Time consuming

• Error prone
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Problem Statement II

• Noise Causes False-Positive Results
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Problem Statement II

• False-Positive Results Caused by Weak Laser brightness 
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Problem Statement II

• False-Positive Results Caused by Strong laser brightness 



30 years on the Road To Progressively Better Data30 years on the Road To Progressively Better Data

Problem Statement III
• Hard to Distinguish Patterns from the Noise Pixels 

from Patterns from Fine Crack Pixels
• How to Reduce the False Negative Detections
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GAN Based Crack Generation
• Network Architecture

Input Crack Map
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Generated Results

Input Crack Map Output 3D Pavement Surface

Input Crack Map Output 3D Pavement Surface
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GAN Network Architecture

Generator

Discriminator Meaning of Each Layer
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Flatten Surface for Later Processing
• Pre-Processing: Median Filter
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Training Data
• More than 1000 Crack Images without Noise
• Hundreds Images with Noise
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Initial Training Results

Probability Map from D

Probability Map from D

Crack Map from G

Crack Map from G

Pavement Data Ground Truth Crack Map

Pavement Data Ground Truth Crack Map
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Finalized Training Results

Probability Map from D

Probability Map from D

Crack Map from G Pavement Data Ground Truth Crack Map

Crack Map from G Pavement Data Ground Truth Crack Map
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GAN Based Image Quality Enhancer
• New Ongoing Work: Generates High Resolution 

Data from Low Resolutions Data

• 1 mm resolution data as the training data

• Down sample the 1 mm resolution data to 4 mm or 16 

mm resolution as the input for the GAN

• Train the GAN to recovery the data to 1 mm resolution
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Procedures

Down Sample
GAN

SR Data LR Data SR Data

GAN CrackNet

LR Data SR Data

Higher 
Precision

Training Procedure

Detection Procedure
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Problem Statement IV

 False-Positive Results

VGG Results

CrackNet-R Results
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Solutions

 Pattern-Level Re-Detection

Ori. Image

VGG Results

Blob 
Analysis

Spatial 
Pyramid 

Pooling (SPP) 
Network

?

Regional Proposal
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Components of SPP Network
 Convolutional Layers
 Spatial Pyramid Pooling (SPP)
 Fully-Connected Layers

[1] “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition”, Kaiming He et al., 2015

Fixed-Length Feature 
Generation 

Regardless of Image 
Sizes
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SPP based Crack Detection
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Experimental Results
False-Positive Suppression

Ori. Images VGG Only VGG + SPP
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Experimental Results

Performance Indices Comparison

Summary
 Recall: Slightly Decrease
 Precision: Largely Increase
 F-Measure: Achieve 90.06

 SPP Speed
 i7-4810MQ + GTX 980M
 0.23 Sec. / Image

Precision Recall F-Measure

VGG (Tanh) 84.31 90.12 87.12

VGG + SPP 90.76 89.38 90.06
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Next-Gen Sensors: 1mm & 0.1mm in 3D
• Components in Laser Electronics & Imaging

• Evolving Rapidly
• 2K (2048-pix), 4K (4096-pix), & 8k (8192-pix)
• High-frame rates
• Affordable high-power laser
• Computing (CPU, GPU), & Newer Hardware 

Interfaces
• Result

• Better Quality at Higher Performance
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Challenges in Pavement Safety Data
• Decades Old Approaches

• Micro & Macro Texture Data Sets; MPD, MTD?
• Contact & Water Based Friction Devices
• Aging Standards: ASTM et al

• Data Quality
• Comparable?
• Consistent?
• Precision & Bias Levels?

• High Cost
• Equipment Capital
• Operation
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Non-Contact 0.1mm 3D Sensor
• Laser & Electronics Limitations

• Not Much Anymore
• Computing & Interface Performance

• Timely
• Challenges

• Ongoing R&D for Highway Speed
• Validation & Verification Against Traditional Means

• Objectives
• Ultimately replace both texture measurement sensors 

& contact-based friction devices
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Samples of Sub-0.1mm 3D Data (LS-40)
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Lessons Learned

Deep Learning
Truly Useful for Cognition Based Problems
Unparalleled Field Applications in Recent Years

Fully Automated Cracking System
Achieved First-Time Ever with CrackNet in 2018
60MPH (100KPH) Processing Speed in 2019?

Other Pavement Applications
Safety Measurement of Pavement Surfaces
Other Non-Cracking Distresses
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Where does the Future Lead?

DL Solutions Applicable to Infrastructure based 
Problems

Highway/Runway/Tunnel/High-Speed Rail

Very Fortunate: New Sensors, Software Tools 
& Computing Capabilities

Self-Learning

Very Large Training Data Sets: 20,000 Pairs
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Conclusions

Deep Learning (DL) Based Solutions
Strong capabilities of learning
Consistent precision and bias levels on any 

roads/runways
Better with deeper structures & larger data sets

CrackNet: Consistent Efficiency in Pixel Accuracy

A Future for Automated Surveys

Non-Analytical, Intelligence Based Solutions
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