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Pavement Data Collection Types

dFunctional: Roughness (Longitudinal, IRI)

ASurface Distresses
 Cracking
 Rutting
 Faulting, and others

Structural: Surface Deflection
e FWD., TSD, RWD, RAPTOR, etal

dSafety: MPD, MTD, Various Friction Testing
Devices per ASTM
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Data Collection Systems

JRoughness: Relatively Mature

JdSurface Distresses: Not Fully Automated
e 3D Laser Imaging: Imm, 0.5mm, 0.1mm?

Structural Evaluation: Evolving Rapidly

 Traditional FWD
e High-Speed: TSD, RWD, RAPTOR, Others

dSafety
e Contact Now, and Non-Contact in the Future
e New 0.1mm 3D Laser Imaging System?

dKet to Solutions
 Software Implementations
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Ultimate Challenge: Cracking

JdCracking: # 1 indicator of Pavement Distresses

JNeed: Cracking Detections and Classifications

e Pavement Design: Fatigue Models Rely on
Accurate Cracking Data

e Pavement Management: Distress Prediction and
Rehabilitation

Status: No Usable Technology in Full
Automation for Cracking Detection
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Fatigue Cracking in ME Design
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Cracking in Pavement Management

dCritical in Assessing Condition for Both
Roadways and Runways for Rehabilitation
and Maintenance Needs

#1 Importance for Surface Condition Survey
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Accurate Cracking Data Thru Automation

dExtreme Difficulty due to Complexity

»Pavement Surface: A Highly Complicated
Environment with Extensive Uncertainties

» Distress Identification: Challenging Even for Well-
Trained Human Operators

» Diverse Pavement Surface Texture

»Presence of Various Pavement Distresses

» Diversified protocols of cracking definitions

30 years on the Road To Progressively Better Data



Limitations, Traditional Algorithms

JASimple Methodology & Specific Assumptions
Not Fully Validated on Diverse Pavement
Surfaces

dLimited or Even No Learning Capabilities

Inconsistent Precision & Bias Levels on

Different Roads
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Common Failures, Traditional Method

* |Inconsistent Accuracies for Pavement with Various Texture

Smooth Pavement Surface Highly Textured Pavement Surface
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Common Failures, Traditional Method

lInterference from Other Patterns
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Ultimate Objectives

JAutomated Crack Detection

»Find the Actual Location of Distresses with Pixel-Perfect
Accuracy

JAutomated Crack Classification
» Label Distress Types
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3D Data at 60MPH (100KM/h
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3D Data at 60MPH (100KM/h
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3D Data at 60MPH (100KM
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Goal of Automation:

Location and Geometries of
Cracking Information

30 years on the Road To Progressively Better Data



Traditional Artificial Neuron Net

@ Input Layer () Hidden Layer @ Output Layer

# of Neurons<104 # of Neurons=10' (Human Brain)

AShallow Abstraction

» Limited Number of Layers & Neurons
» Cannot Fully Reflect the Complexity of Problems

dLimited Amount of Data
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Deep Learning

dDeep Abstraction

> # of Layers: 101-10°
> Exploit Understanding on Complex Problems

dComplex Connections Among Neurons
> # of Connections Per Neuron: 10%-104

dEnhanced Reliability

» Feed with Exhaustive Variations of Example Data

Patterns of Local S8 R

Contrast
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Why Deep Learning?

Strong Learning Ability and Versatility
dEnhanced Reliability through Continuing Learning
JdKnowledge Accumulation: as to Human Learning

Why deep learning
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Shallow vs. Deep Networks
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Deep Networks Shallow Networks

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
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Image Model of CNN: Learning Cognition

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and

contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

(Goodfellow et al., Deep Learning, 2016)
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DL Design for Pavement Cracking

Image Library

Real Pavement Data

Diverse Representative Surfaces

Generative Modeling

Software

Acrtificial Pavement Data Real-time Processing
with Unknown Variations
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Image Library: Basis of Learning

dData Type
» 3D Pavement Data & 2D Pavement Images

dlImage Library Size
» 2016-2017: 10,000 3D Images + 10,000 2D Images
» 2017-2020: 50,000 3D Images + 50,000 2D Images

JGround Truth with Pixel-Perfect Accuracy
> Manually Marked or Verified

Diversity
> All Typical Variations of Pavement Distresses
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Typical Labeled Examples, Image Library

30 years on the Road To Progressively Better Data



CrackNet

Pixel-Level Accuracy
dConcrete & Asphalt

Parallel Computing

Consistent Efficiency
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Traditional Algonthms vs. CrackNet
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CrackNet for Flexible Surfaces
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CrackNet for Rigid Surfaces
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CrackNet |

Input Image Input Layer Fully-connected Layer I
312 Feature Extractor 512 ‘ | 360@50%50 Filters
R — - —_—
/ Leaky RelLu
1024 1024
360 360
Convolution Layer I Fully-connected Layer II Convolution Layer II Output Layer

_ Sigmoid Units 512

-
512 ‘ |
1024 260 | G

1024

1 x1 Convolution

LConvolutional Neural Network
7 Layers

11,159,561 Parameters
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CrackNet I

LConvolutional Neural Network
110 Layers

42 571 Parameters
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CrackNet-V
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CrackNet-R
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Performance Comparison

Precision Recall F-measure

92.19%
86.93%

CrackNet | CrackNet Il CrackNet-V CrackNet-R

Precision=True Positive/(True Positive + False Positive): False Positive
Recall=True Positive/(True Positive + False Negative): False Negative
F-measure=2 xPrecision xRecall/(Precision + Recall): Composite
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Speed Comparison

Processing Time (s)

Image Size: 1024 x512

CrackNet | CrackNet Il CrackNet-V CrackNet-R
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Typical Performance of CrackNet-R
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An Example of CrackNet Effectiveness
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PCI Data from A Large County in the US
dManual PCI (2106) & Fully Automated PCI ( CrackNet in 2018)
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Part Two

Work In Progress:

1. Generative Adversarial Networks (GANSs)
2. Spatial Pyramid Pooling

3. New High-Performance Sensors from 1mm to 0.1mm
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Generative Adversarial Networks (GANS)

A class of artificial intelligence algorithms
used In unsupervised machine learning

dImplemented by a system of two neural
networks contesting with each other in a
zero-sum game framework

dCan generate photographs superficially
authentic to human observers

Goodfellow, et al (2014). "Generative Adversarial Networks"
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Basic GANs Structure

* Proposed by lan J. Goodfellow et al. 2014
e Generator network (G)
e Discriminator network (D)

e G and D are competing against each other in a minmax game

Xreal

) 4>| Real or Fake?

T (noise) G —— Xrake —
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Principles of GANs

Random Noise Fake Label Real Label

e

Generator
)

( |
Fake Data Real Data jl> Fake Data Real Data
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GANSs for Crack Detection

Random Noise Noise Label Crack Label
\ )

@ Final Detector iY

Generator
)

( | ( |
Noise Pattern Crack Pattern jl> Noise Pattern Crack Pattern
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Basic GANs Structure for Cracking

* GAN Based Crack Generation
e GAN Based Noise Discriminator

* GAN Based Image Quality Enhancer
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GANSs Applications

* Generate images

e Translate images

this small bird has a pink  this magnificent fellow is the flower has petals that this white and yellow flower
breast and crown, and black almost all black with a red are bright pinkish purple have thin white petals and a
primaries and secondaries. crest, and white cheek patch.  yith white stigma round yellow stamen
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Problem Statement |

* Generate Deep Learning Training Data

* Time consuming

* Error prone
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Problem Statement Il

* Noise Causes False-Positive Results
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Problem Statement Il

* False-Positive Results Caused by Weak Laser brightness
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Problem Statement Il
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Problem Statement Il
e Hard to Distinguish Patterns from the Noise Pixels
from Patterns from Fine Crack Pixels

e How to Reduce the False Negative Detections
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GAN Based Crack Generation

e Network Architecture
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Generated Results

Input Crack Map

Input Crack Map Output 3D Pavement Surface
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GAN Network Architecture

Input: Pavement 3D Data (256+256)
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Flatten Surface for Later Processing
* Pre-Processing: Median Filter
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Training Data
e More than 1000 Crack Images without Noise

 Hundreds Images with Noise
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Initial Training Results
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Finalized Training Results

-1.0

e, v e
Crack Map from G Pavement Data Ground Truth Crack Map
Probability Map from D Crack Map from G Pavement Data Ground Truth Crack Map
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GAN Based Image Quality Enhancer

* New Ongoing Work: Generates High Resolution
Data from Low Resolutions Data

1 mm resolution data as the training data

e Down sample the 1 mm resolution data to 4 mm or 16

mm resolution as the input for the GAN

e Train the GAN to recovery the data to 1 mm resolution
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Procedures

»
»

Down Sample

SR Data LR Data SR Data

Training Procedure

——[CrackNet [ Froce
Precision

LR Data SR Data
Detection Procedure
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Problem Statement IV

False-Positive Results

VGG Results

raN et-R Result
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Solutions

Pattern-Level Re-Detection
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Components of SPP Network

Convolutional Layers
Spatial Pyramid Pooling (SPP)
Fully-Connected Layers

fully-connected layers (fce, fc7)

t

fixed-length representation
r - ) Fixed-Length Feature
— — .. — — .
4 16x256-d 4 4x256-d 4 ) 256-d Generation
[ v e / / Reqardless of Image
Y //\// 7 Sizes
M spatial pyramld pooling layer

feature maps of convs
(arbitrary size)

' convolutional layers

input image

[1] “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition”, Kaiming He et al., 2015
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SPP based Crack Detection

. Feature Extraction == |
Regional Filtered by Conv. Layers
Input Input
{7 ; j _
8 e 8
I" 4 Pmce-ssmg. 1} L \ \ \ \ \ \
] . Conv. Layers of 8 Channels with 3=3 Firs |
Arbitrary Sizes of Inputs SPP Pooling | !

Is Crack O
or Not?

336 Neurals 8«21 Neurals

Object Recognition
by Perceptron
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Experimental Results

False-Positive Suppression

L TTTTTTRY O 0
:r 1

Ori. Images VGG Only VGG + SPP
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Experimental Results

Performance Indices Comparison

VGG (Tanh) 84.31 90.12 87.12
VGG + SPP 90.76 89.38 90.06
dSummary

Recall: Slightly Decrease
Precision: Largely Increase
F-Measure: Achieve 90.06

SPP Speed

i7-4810MQ + GTX 980M
0.23 Sec. / Image
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Next-Gen Sensors: 1Imm & O.1mm in 3D

* Components in Laser Electronics & Imaging
e Evolving Rapidly
e 2K (2048-pix), 4K (4096-pix), & 8k (8192-pix)
e High-frame rates

e Affordable high-power laser

e Computing (CPU, GPU), & Newer Hardware
Interfaces

e Result
e Better Quality at Higher Performance
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Challenges in Pavement Safety Data

e Decades Old Approaches
e Micro & Macro Texture Data Sets; MPD, MTD?
e Contact & Water Based Friction Devices
e Aging Standards: ASTM et al

e Data Quality
e Comparable?
e Consistent?
e Precision & Bias Levels?

* High Cost
 Equipment Capital
e Operation
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Non-Contact O.1mm 3D Sensor

e Laser & Electronics Limitations
* Not Much Anymore

e Computing & Interface Performance

* Timely
e Challenges

* Ongoing R&D for Highway Speed

 Validation & Verification Against Traditional Means
e Objectives

e Ultimately replace both texture measurement sensors
& contact-based friction devices

30 years on the Road To Progressively Better Data



Samples of Sub-0.1mm 3D Data (LS-40)

INtensiiy.lmage

Range Image
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Lessons Learned

dDeep Learning

> Truly Useful for Cognition Based Problems

»>Unparalleled Field Applications in Recent Years
dFully Automated Cracking System

> Achieved First-Time Ever with CrackNet in 2018

»60MPH (100KPH) Processing Speed in 2019?
JOther Pavement Applications

» Safety Measurement of Pavement Surfaces

> Other Non-Cracking Distresses
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Where does the Future Lead?

DL Solutions Applicable to Infrastructure based
Problems

JdHighway/Runway/Tunnel/High-Speed Rail

dVery Fortunate: New Sensors, Software Tools
& Computing Capabilities

1Self-Learning
dVery Large Training Data Sets: 20,000 Pairs
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Conclusions

dDeep Learning (DL) Based Solutions

> Strong capabilities of learning

> Consistent precision and bias levels on any
roads/runways

> Better with deeper structures & larger data sets

dCrackNet: Consistent Efficiency in Pixel Accuracy

A Future for Automated Surveys

»Non-Analytical, Intelligence Based Solutions
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