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Background

(JRoadway departure: accounting for 53% of the total traffic fatalities in
the U.S. (FHWA 2017)
125% of all European road fatalities related to diminished skid-resistance

dDesired pavement friction: effective countermeasure to roadway
departure fatalities
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Background

(dPavement friction: the force resisting the relative motion between
vehicle tire and pavement surface

v'  Deteriorate with time under various factors
v' Some DOTs perform continuous monitoring

v Friction Testing: British pendulum tester (BPT), dynamic friction tester
(DFT), grip tester, locked-wheel trailer, Side-Force Coefficient Road
Inventory Machine (SCRIM), etc.
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Background

Grip Tester

Locked-wheel Tester
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Background

JExisting friction measurements

v' Require testing tire/rubber
Require large water tank to wet the surface
Disturbs the traffic flows during the tests

Performed at project level

NN N X

Affected by temperature, test speed, contact pressure, water film
depth, tire tread, viscoelastic properties of testing tires et al.

Predict pavement friction using non-contact measurements:

Challenging
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Background
(Pavement texture: the deviations of pavement surface from a true
planar surface
JHigh speed profiler
v' Collect texture data at highway speed and network level

v" Non-contact method
v' Widely implemented by DOTs

Predict pavement friction from the high speed profiler data:

Could be a surrogate of tradition friction testing
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Problem Statement

(No consistent relationships between texture indicators and friction via
traditional methodologies
v' Macro-texture
s MPD: simplified representation of rich texture profiles
s MTD: labor and time consuming, require traffic control, and subjective

v' Micro-texture: lab testing on limited area, high speed instrument not available

Peak level 2nd

Mean segment depth

Peak level 1st

MPD Calculation in ASTM

Vertical profile

Average level
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Problem Statement

dMachine-learning (ML) technology
v' Fail to process natural data in its raw form
v' Require domain experts to pre-process the input data
v'  Developing customized feature extractor(s)
(Deep learning (DL) neural networks
v" Allow a machine to be fed with raw data
Automatically discover the representations needed for detection or classification

Led to many breakthroughs for image classification and recognition

AN

However, deeper neural networks were much more difficult to train than
expected: degradation problem
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Objectives

(Deep Residual Network Architecture for pavement skid resistance prediction

v

v
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Use non-contact high speed texture measurement to predict pavement
friction

Learn and extract the textural features and classification boundaries
automatically from raw input data

“Convolutional group” and “skipped connection” perfectly solves the
problem of “degradation”

Develop Friction-ResNets model with 11 convolution layers: high prediction
accuracy




Data Source
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FHWA, LONG TERM PERFORMANCE MONITORING OF HIGH FRICTION SURFACING
TREATMENTS (HFST) SITES (3 YR)
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Data Source

Distribution
O 49 HFST Sites
O In 12 states

Devices
O High Speed Profiler
O Grip Tester

(e) Grooved PCC from IA-180-Ramp (f) Bridge Deck from TN-SR385
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Data Collection Devices
JAMES 8300 High Speed Profiler

v' Surface macro-texture data & standard profile data at highway speed
(25 - 65 mph)
v' Mean Profile Depth (MPD) & roughness index (IRI)

v" Resolution: 0.045 mm in vertical direction and 0.5 mm profile
wavelength.
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Data Collection Devices
Grip Tester
v' Continuously friction measurement equipment (CFME)

v' Operating around the critical slip of an anti-lock braking system (3.28-ft
intervals, 40 mph testing speed and a constant water film thickness of 0.25 mm)

v" Airports and highways safety management
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Deep Residual Networks (ResNets)

(UNewest trends in Artificial Intelligence: deep learning (DL)

dTop-ranked teams on ImageNet challenging all exploit “very deep” models
dPredict friction using non-contact texture measurements

(dDeeper neural networks are much more difficult to train than expected:
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Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer networks (He et al. 2016)
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Deep Residual Networks (ResNets)

JLower gradients: circumvent the exploding gradient problem
d“Skipped connection” & “residual unit”: solve the “vanishing” problem
(JResidual unit performs the following computation

Xiy1 = X; + F(X, W)

X; :input feature to the it residual unit.

W; = {Wi'k|1 < k < K} : a set of weights (and biases)
associated with it" residual unit

K: number of layers in a residual unit.

Function F: denotes the type of residual work in each unit
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Deep Residual Networks (ResNets)

I This process can be repeated recursively
Xivz = Xiz1 + F(Xi41, Wis1)
Xit2 = Xi + FXu, W) + F(Xi 41, Wigq)
dFor any deeper unit and any shallower unit

X, =X, + Xi A F (X, W)
JAssigning loss function e, according to the chain rule of backpropagation

de  0de 0X; Oe
0X; 0X,0X; 0X;

0 . : : : . e :
. 676 propagates information backward directly without any weight layer within a unit
1

I-1
d
1+ 672 F (X, Wy))
V=i

2e 2

I-1
3%, 9%, Y= F propagates

* Information arrives at any shallower unit i, while the term
through the weight layers within a unit
: , : . 0 «j—
* Gradient of a stage can’t vanish, since Echzli F cannot always equal to -1 for all
l

samples in a mini-batch
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Profile Spectrogram

dPair raw pavement texture profile with friction number for each 3.28-feet
segment

(ASpectrogram: a visual representation of the spectrum of signal frequencies
as they vary with time or some other variable

o

10

'V\,\A/\WWVWM “

30

* Friction models

40

1D surface texture data
S0

0 10 20 30 40

2D spectrogram

30 years on the Road To Progressively Better Data




Convolutional Group

(dConvolution: adding each element of the 2D matrix to its local neighbors,
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(BN: makes normalization a part of the model architecture performs the
normalization for each training mini-batch

(JRelLU: most commonly used activation function in DL
v" Helps a network account for interaction

v' Capture non-linearity’s characteristics so as to improve discriminative
performance

30 years on the Road To Progressively Better Data



Friction-ResNets Architecture
JFrcition-ResNets architecture

v" 13 layers: 11 convolution, 1 average pooling, and 1 output layer

Stage Name Stage 1 Stage 2 Stage 3 Stage 4 Average pooling
Output Size 51*48 51*48 25*24 12*12 1*1
Number of kernels (3*3) 16 32 64 96 -
Number of Conv Units 1 conv layer 3 conv groups 1 conv group 1 conv group -
Dropout Dropout
Layer Layer
Skipped Connection i t
<0.2
0.3
C C C C \ C Average Fully o
onv onv onv onv onv 0.5
v,| C ted—
Gonvlayer1 Group 1 Group 2 Group 3 Group 4 Group 5 Pooling ennecte

Friction Classes 0-6
k J 0.7
‘r ] Y 0.8

>0.9
Stage 1 Stage 2 Stage 3 Stage 4
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Training/Validation/Test

Eight bins at every 0.1 interval ranging from 0.2 to 1.0
v’ <0.2,0.3,0.4,0.5,0.6,0.7,0.8,>0.9

(14,200 pairs of data randomly selected from each bin of friction level

v’ 70%, 15% and 15% for training, validation, and testing

dTraining platform: Pytorch

dTraining hardware: Intel (R) Core (TM) i7-4702HQ CPU @ 2.20 GHz

dTraining time: 9.2 hours with 8000 iterations (65 epochs)

30 years on the Road To Progressively Better Data




Learning Curve
(18000 iterations (65 epochs)
dTraining accuracy: 99.85%
(dValidation accuracy: 91.95%

train_loss train & valid accuracy
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Testing Results Evaluation

Testing Predicted Friction Level
Distribution <0.2 0.3 0.4 0.5 0.6 0.7 0.8 >0.9
<0.2 579 11 10 9 12 3 2 4
0.3 11 565 10 12 11 9 8 4
0.4 10 17 568 8 7 4 8 8
Actual
05 | 11 5 9 532 2 5 7 4 Testaccuracy: 91.3%
Friction
0.6 1 8 7 8 590 9 6 1
Level o7 | 2 2 11 3 12 588 7 5
0.8 3 10 15 10 6 16 551 19
>0.9 3 6 5 5 4 9 19 579
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Comparisons with Machine Learning (ML) Algorithms

JML: most effective classification tool before widespread adoption of deep
learning

(AState-of-the-art ML algorithms: Support Vector Machines (SVM) & Random
Forest (RF)

dTraditional ML algorithms: K-Nearest Neighbor (KNN) & Gaussian Naive
Bayes (GNB) =
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Conclusions

dLarge amount of texture and friction data collected on diverse pavement
surfaces

v’ 23,520 pairs of data for training, 10,080 pairs of data for validation and testing
dFriction-ResNets: ResNets based friction prediction model
v" 11 convolutional layers with millions parameters

v" Achieve 99.85% training accuracy, 91.95% validation accuracy and 91.3% testing

dCCuracy

AN

Outperform other machine learning algorithms

v' Using non-contact texture measurements to predict friction
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Thanks and Questions?

Gary G. Yang
guangwy@okstate.edu
School of Civil and Environmental Engineering
Oklahoma State University
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