

Lessons Learned from Real-Time Smoothness Technology Demonstrations

RPUG 2017 Annual Meeting Denver, Colorado 16 November 2017 David K. Merritt, PE(TX)

> U.S. Department of Transportation Federal Highway Administration

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

Real-Time Smoothness for Concrete Paving

- Overview of Real-Time Smoothness Technology
- SHRP2 RTS Implementation Program
- Lessons Learned from Equipment Loan Program

Real-Time Smoothness for Concrete Paving

- Overview of Real-Time Smoothness Technology
- SHRP2 RTS Implementation Support
- Lessons Learned from Equipment Loan Program

What is Real-Time Smoothness?

Real-time Smoothness (RTS) refers to measuring and evaluating the concrete pavement surface profile during construction, somewhere along the paving train while the concrete surface is still wet (plastic).

RTS Profilers

GOMACO Smoothness Indicator (GSI)

Ames Engineering Real Time Profiler (RTP)

SSI Dynamic Profiler (not shown)

Stand-Alone GOMACO GSI Machine

Real-Time Feedback and Tracking of Events

M Main

		Event Log	
St.Start	St.End	Description	Date/Time
91+10 st	0+00 st	PAVER STOP	10:58a 10/0*
91+71 st	0+00 st	PAVER STOP	11:13a 10/01
92+02 st	0+00 st	PAVER STOP	11:28a 10/01
94+56 st	0+00 st	PAVER STOP	12:13a 10/01
97+14 st	0+00 st	PAVER STOP	01:02p 10/01
97+41 st	0+00 st	PAVER STOP	01:08p 10/0
× [III.		•
Add	Edit	Delete	Default Events

Real-Time Smoothness for Concrete Paving

- Overview of Real-Time Smoothness Technology
- SHRP2 RTS Implementation Support
- Lessons Learned from Equipment Loan Program

SHRP2 RTS Implementation Program

- SHRP2 Project R06(E): Effort to demonstrate and evaluate existing RTS measuring technologies (2009 - 2011).
 - Georgia, Arkansas, Texas, Michigan & New York
- Developed draft model specifications and guidelines.
- Final report online:

http://www.trb.org/Main/Blurbs/167282.aspx

SHRP2 RTS Implementation Program

SHRP2 Solutions Implementation effort (2014-2017):

- Equipment Loan Program
- Showcase
- Workshops
- Documentation of results/case studies
- Specification Refinement

SHRP2 RTS Implementation Program

Equipment Loan Program

- Idaho, I-84
- Nebraska, I-80
- Michigan, I-69
- Texas, SH99
- Pennsylvania, I-81
- Iowa, Lyon Co. L-26
- Illinois, I-90 Tollway
- Utah, I-15
- Utah, I-215
- California, SR46
- Iowa, US 20

- 8 JPCP, 2 CRCP, 1 Thin Overlay
- Varying slab thickness and base/subbase types
- Daytime and nighttime paving
- Varying paver types and setup (paver width, concrete delivery, finishing operations)
- Varying mix designs
- Dowel baskets and DBI
- 9 stringless, 2 stringline

Real-Time Smoothness for Concrete Paving

- Overview of Real-Time Smoothness Technology
- SHRP2 RTS Implementation Support
- Lessons Learned from Equipment Loan Program

Lessons Learned from RTS Equipment Loan Program

- 1. RTS vs. Hardened Profiles
- 2. Features Picked Up by RTS
- 3. Benefits for Contractors and Agencies

Lessons Learned from RTS Equipment Loan Program

1. RTS vs. Hardened Profiles

- 2. Features Picked Up by RTS
- 3. Benefits for Contractors and Agencies

 Roughness results are different (RTS generally higher) but trends are similar.

- There is no fixed correlation between RTS and hardened numbers.
- In general, RTS numbers will always be higher, but the degree is project/crew/equipment specific.
- Any correlation will need to be established during the first few days of paving.

• *Rule of thumb:* the higher the RTS numbers, the greater the difference between RTS and hardened, the lower the RTS numbers, the smaller the difference.

Project A

	Commont	RTS IRI	QC MRI	Difference
	Segment	(in/mi)	(in/mi)	(in/mi)
Day 1	1	113.2	67.0	46.2
	2	77.3	57.0	20.2
	3	79.9	64.6	15.3
Day 2	1	90.0	53.2	36.7
	2	108.9	77.5	31.4
	3	114.4	57.2	57.1
Day 3	1	111.7	65.3	46.4
	2	118.2	71.0	47.2
	3	116.4	68.0	48.4
	4	94.9	61.9	33.1
Day 4	1	122.6	64.5	58.1
	2	122.5	61.9	60.7
	Avg.	105.8	64.1	41.7

Project B

	Segment	RTS IRI	QC MRI	Difference
		(in/mi)	(in/mi)	(in/mi)
Day 1	1	66.2	61.1	5.1
	2	65.7	62.2	3.5
	3	58.0	48.8	9.2
Day 2	1	59.3	51.6	7.7
	2	59.4	47.7	11.7
	3	62.5	45.1	17.4
	4	54.3	48.2	6.2
Day 3	1	54.7	44.1	10.6
	2	65.6	57.8	7.8
	3	69.6	57.6	12.0
	4	70.9	61.1	9.8
Day 4	1	58.1	53.0	5.1
	2	91.8	66.3	25.4
	3	71.2	54.3	17.0
	4	86.5	66.5	20.1
	Avg.	66.3	55.0	11.2

Lessons Learned from RTS Equipment Loan Program

- 1. RTS vs. Hardened Profiles
- 2. Features Picked Up by RTS
- 3. Benefits for Contractors and Agencies

Joint spacing/dowel basket effects

Joint spacing/dowel basket effects

- Dowel basket effect is reduced in hardened profile as
 - finishers remove much of this shorter wavelength content.
- Are harmonics "real" content?

• Project utilizing Dowel Bar Inserter

• Stringline and Stringless System Effects

• Stringline and Stringless System Effects

10000

• CRCP Bar Supports

Localized roughness/improvement from finishers

Lessons Learned from RTS Equipment Loan Program

- 1. RTS vs. Hardened Profiles
- 2. Features Picked Up by RTS
- 3. Benefits for Contractors and Agencies

Lessons Learned: 3. Benefits for Contractors & Agencies

- Primarily a QC tool for contractors
 - Not so much for identifying localized roughness
 - Evaluating effects of changes during paving on smoothness
 - Identifying "systematic" issues in the paving operation
- NOT a replacement for conventional (hardened) QC profiling.
- Transition from Prl to IRI specifications.
- Tool for agencies to understand effects of design factors on smoothness.

- Finding (and maximizing) the "sweet spot" for maximizing
 - smoothness:

Lessons Learned: 3. Benefits for Contractors & Agencies

- Example from North Dakota
 - Specification: Full Pay = 50-54 in/mi, Correction > 68 in/mi, ALR (25' baselength) = 80 in/mi.
 - Approx. 1.1 miles of paving: average IRI = 28 in/mi.

Lessons Learned: 3. Benefits for Contractors & Agencies

- Example from North Dakota
 - Mixture Factors: optimized gradation mix, tailored for the project.
 - Human Factors:
 - Conscientious crew, everyone knew their job (no panicking)
 - Experience (paver operator in particular)
 - Good communication
 - Paving Factors:
 - Minimal design challenges (mostly tangent, little grade)
 - Well-maintained paver
 - Base trimmed to grade through padline
 - Two placer-spreaders = minimal "work" by paver
 - RTS used as a "smell check" QC tool.

Real-Time Smoothness for Concrete Paving

Questions and Discussion

