NON – LOCK FRICTION TESTING UPDATE

Fall 2016

John Andrews

CURRENT METHOD

- ASTM E-274 Skid Truck
 - Measure Drag Force during Sliding Friction
 - Primary Sensor Tire (grooved/ribbed)
 - Collect Average force values over 59 ft.* (1 sec.)
 - Total Test Sequence ~ 225 ft.*
 - Water consumed ~ 2 gal.

* = at standard test speed (40 mph)

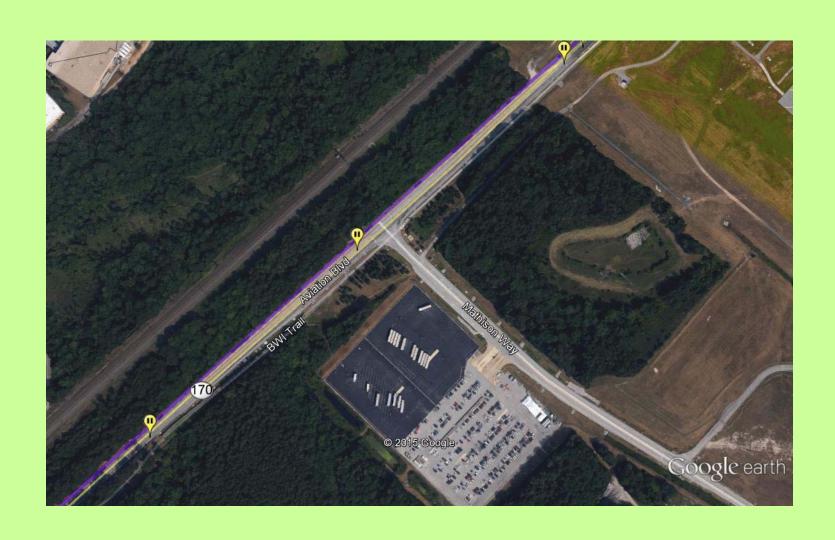
EQUIPMENT

E – 274 ISSUES

- Only sampling 5% 10% of pavement
- Large sample spacing (typically 1056 ft.):
 - CAUSES:
 - Water consumption per test
 - Total test sequence time
 - RESULTS:
 - Lost tests at intersections etc.
 - Sections shorter that ¼ mile very difficult to test
 - Miss key pavement sections of concern:
 - Ramps, Sharp curves, Traffic control areas
- Measuring "locked" sliding friction

PLAN

- Apply the limited testing resources more effectively
- Collect a more representative sample
- Increase the size of the sample
- Functional test that more closely resembles the typical vehicle response (anti-lock brakes)
- Minimize the impact of tire structure properties
- Maintain focus on microtexture
- Measure macro-texture separately (laser)


RESULT – NL TEST

- Data averaging time of 0.04 to 0.1 sec (3-5ft.)
- Averaging between 33% and 67% "lock-up"
- Reduce total test time to under 1 sec
- Reduce water consumption to ~ 0.5 gal
- Routine sample spacing 0.04 mi (211ft)
- Short routes 0.02 mi. (106 ft)
- Projects ~ 0.01 mi. (53ft)

ADVANTAGES

- More tests per mile (higher resolution data)
- Tests in critical areas (curves, intersections)
- Less water and tire wear per test
- Less impact from tire structure than other slip type tests
- Test is more representative of current vehicles with anti-lock brakes

TESTING @ 0.2 Miles

TESTING @ 0.04 MILES

EQUIPMENT

Large Equipment

KEY EQUIPMENT IMPROVEMENTS

- Heavy duty brake calipers
- High output air compressor
- High output generator
- 1kHz data sampling rate
- Automatic load leveling
- Texture laser & GPS

TEST SEQUENCE

LAST YEAR

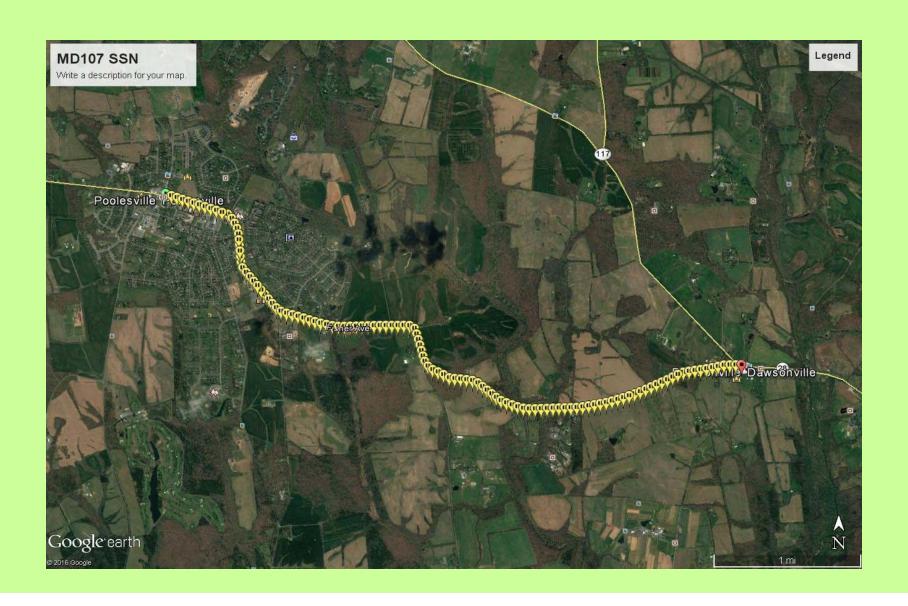
- PG and Montgomery Counties
- 4000 test points
- Derived SSN from full ASTM test
- Found a 0.77 relationship with .99 R²

THIS YEAR

- PG county same as last year
 - 0.2 mile spacing
- Montgomery County non-lock test only
 - 0.04 mile spacing

Relationship Plot - PG County

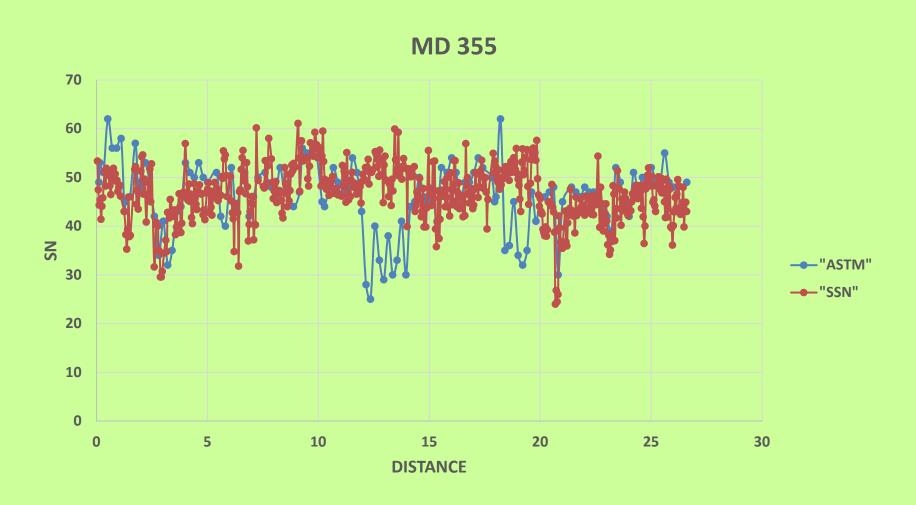
0.77 * SSN vs SN


SAMPLE DATA

- Montgomery County
- Maryland state maintained roads
- Typical SSN sample interval 0.04 miles
- > 9000 test locations
- Vast majority asphalt pavement

MD107 ASTM

MD107 SSN


TYPICAL GRAPH

TYPICAL GRAPH

TYPICAL GRAPH

DATA FILTERING

Removed :

- Speed less than 20 mph
- Water (gal/min) less than 60% speed (mph)
- Outliers outside 10 SSN of before/after averages

DATA FILTERING SUMMARY

- Total tests 9510
- Bad tests (s,w)
 1204 (mostly speed)
- Acceptable tests 8366
- Deemed outliers 308
- Remaining tests 8058

OVERALL ANALYSIS

- County Average SSN 54.1
- County Average SSN (der) 61.9 (last year rev.)
- County Average ASTM SN 47.9 (2 years ago)
- County Average ASTM SN 48.0 (last year rev.)
- Ratio Derived SSN ----- 0.78 (last year)
- Ratio Actual SSN ----- 0.83

CAUSE(S) of DIFFERENCE?

Possibilities:

- Increased resolution
 - Detecting more low spots
- Software calculation issues
 - Timing
- Other
- Combination of any

SUGGESTIONS & OUFSTIONS