Laboratory Design of Quieter Asphalt Surfaces

The University of Texas at Austin

Natalia Zuniga-Garcia
Andre de Fortier Smit
Manuel Trevino
Prasad Buddhavarapu
Jorge A. Prozzi

Introduction

- Objective: Develop laboratory procedures to measure noise generated by surfacing materials.
- Low-noise pavement surfaces are a costeffective option to reduce traffic noise.

Highway Traffic Noise Tire-Pavement Noise

Pavements in noise mitigations.

Flexible Pavement

Surface Texture Surface Porosity

Surface Stiffness

Other Factors

Rigid Pavement **Surface Texture**

Finishing

Tire-Pavement Noise Surface texture

Both macrotexture and megatexture influence in

road noise.

Macrotexture
 is mainly
 influenced by:

- Gradation
- Degree of compaction

Tire-Pavement Noise Macrotexture

Mean Profile Depth MPD - ASTM E1845

Tire-Pavement Noise Macrotexture and Gradation

- A noise database was established from data collected on asphalt pavements tested in Texas and at the National Center for Asphalt Technology (NCAT) test track.
- The best correlation was found between MPD and percentage passing the #4 sieve (4.75 mm).

Tire-Pavement Noise Macrotexture and Gradation

 This relation provides a simple estimation of surface macrotexture in terms of mixture gradation and suggests an increase for coarser mixes and a decrease as the fines in the mix increase.

MPD=1.7-0.0164*P4

Laboratory Procedure Test implementation

- Developed specifically to allow the design of quieter pavement surfaces in the laboratory before applying these in the field.
- Modification of the standard ASTM E303 procedure: Measuring Surface Frictional Properties Using the British Pendulum Tester (BPT).
- A sound pressure level meter is placed 4 inches from the contact of the rubber slider and the surface, and 3 inches above the surface of the specimen

Laboratory Procedure Test implementation

Laboratory Procedure Macrotexture Measurement

Laboratory Test Results

- Samples of Texas gyratory compacted TOM specimens were fabricated.
- Mixture related parameters were varied to observe its influence in noise generating.

PFC TOM

Laboratory Test Results

Gradation

Laboratory Test Results

Asphalt Content

MPD

Conclusions

- In contrast to PFC, TOM mixtures are not overly sensitive to variations in aggregate gradation or asphalt content.
- TOM has a proven record of excellent performance as a surface overlay mixture in Texas.
- PFC has been the low noise mixture of choice.
- Evidence from field trials indicates that PFC mixtures in Texas become significantly louder with time.