

Getting the Best Right-of-Way Image

Damion Orsi, P.Eng., PMP Product Manager Fugro Roadware

© Fugro 2013

Contents

- Camera Housing
- Camera Calibration
- Optics
- Sensor
- Image Quality
- Specification on RFPs
- Conclusions

Camera Housing

Camera Calibration

- Camera calibrations are performed for Asset Extraction
 - Interior and Exterior Calibrations are performed
- Photogrammetry algorithms are used

- A camera's resolution depends on the following factors:
 - Optics
 - Pixel dimensions
 - Color interpretation
 - Pixel count
- The pixel count is the **least** important parameter

OPTICS

• **Goal:** A lens must obtain the sharpest image at the maximum aperture possible while minimizing distortions and aberrations

A typical lens assembly is anything but simple!

Changes in Focal Length (11.25° FOV)

Changes in Focal Length (22.5° FOV)

Changes in Focal Length (45° FOV)

Changes in Focal Length (90° FOV)

Changes in Focal Length

90 degree FOV

45 degree FOV

22.5 degree FOV

www.fugro.com

F-stop

- Focal Length divided by Aperture Diameter
- Smaller F-stop, larger Aperture

Changes in F-Stops

A Good Lens is made of Good Glass!

Real lenses are complicated!

- The point spread function (PSF) describes the response of an imaging system to a point source or point object
- We always desire (7), where the PSF is smaller than one pixel

Images courtesy of Zeiss Corporation

Resolution: Rayleigh Criterion

- No lens is perfect
- As light from a sharp edge passes through a lens, it is scattered onto some of the neighboring pixels
- When two spots are close enough, their scattered light overlaps
- If it overlaps significantly, spots cannot be resolved anymore.
- If pixels are sufficient to satisfy the Rayleigh Criterion, then additional pixels are simply wasted

The Rayleigh Criterion

D is the aperture diameter, λ is wavelength

Copyright © Steve's Digicams

Why does it matter?

- Rayleigh Criterion is the resolution limit of the sensor
- Resolution gets worse with smaller aperture
- Example ($\lambda = 550$ nm):
 - Take a lens: A Cinegon 12 mm f/1.4
 - R(θ) Max open= 1.22 * 550/8.57 x 10^6 ~ 0.1 mrad
 - $R(\theta)$ at f/4.0 = 0.2 mrad
 - $R(\theta)$ at f/5.6 = 0.3 mrad
- For 2/3" sensor:
 - At 2 MP: FOV per pixel = ~ 0.3 mrad per pixel
 - At 6 MP: FOV per pixel = ~ 0.2 mrad per pixel
 - At 12 MP: FOV per pixel = ~ 0.1 mrad per pixel
- 12 MP is unusable if you reduce the aperture
- A typical f/4.0 to f/5.6, 6 MP or below is plenty.

Depth of Field

 Definition: For a given focus distance, a range of object distances remains in acceptable focus

- Depth of field is a direct function of the aperture:
 - Smaller aperture -> Larger depth-of-field

Images courtesy of Wikipedia.

Depth of Field Example

Deep DoF

Copyright © Steve's Digicams

Lens Aberrations

- **Spherical**
 - Impact: Softening, halo effect
- **Astigmatism**
 - Impact: While focussing, one axis always more in-focus than the _ other

Chromatic

- Impact: Color fringing on sharp edges such as signs, branches _
- Distortion
 - Impact: Reduces asset measurement accuracy (photogrammetry)

www.fugro.com

Distortion Samples

Barrel Distortion

Chromatic Aberration

Pincushion Distortion

Copyright © Cambridge in Colour

Engineering Trade-offs for Lens Performance

- Aperture:
 - Large: Minimize diffraction
 - Small: Minimize spherical aberrations
- Focal length:
 - Long:
 - Minimize distortion
 - Increase angular resolution per pixel
 - Minimize chromatic aberration
 - Short:
 - Wider field of view
 - Reduced resolution
 - Increased aberrations and distortions
- All lenses have a sweet-spot => good balance between diffraction and aberrations
- Typical sweet spot for most lenses occurs at f/8, which is too slow for mobile platforms
- Acceptable sweet-spot for outdoor scenes can be achieved at f/4 5.6

SENSOR

- Light hits the sensor, transduced into electrons and converted to either a voltage or a current readout
- Sensor Types:
 - CCD
 - CMOS

Sensor Dimensions

Larger Sensor = More Light per pixel

CCD or CMOS

- Differences
 - Manufacturing process
 - Underlying electronics
- Both are built on semi-conductor technology
- Same wavelength response

1/3" Sony CCD with an I/R cut filter

- CCD:
 - Global shutter => Simultaneous capture of the image
 - Higher saturation limit
 - Lower noise
 - Better in low-light
 - Sometimes vulnerable to bright sources
- CMOS:
 - Cheaper, smaller electronics
 - Does not suffer from column bleed
 - Rolling shutter => Line by line capturing of the image
 - Bad for motion

Color filter array (CFA) – Single Sensor

 Bayer ordering is the most common, hence Bayer filter

Images courtesy of Wikipedia.

3CCD/3CMOS design

Trichroic Prism

Image courtesy of Wikipedia.

Bayer is Lossy

- (1) is the original scene, maps one to one to a trichroic prism
- (2) and (3) are raw and colorized captures respectively.
- (4) contains the Bayer output
- Notice the loss of resolution, aliasing, and color banding
- Drawbacks:
 - Each pixel only records one color
 - Bayer filters throw out 2/3^{rds} of the incident photons Bayer -> RGB requires interpolating noncaptured colors for all pixels
- Result: Lost resolution, poor color separation

Image courtesy of Wikipedia.

Bayer Color Artifacts: Fence-posts

Video – 3 CCD

Machine Vision – Single CCD

O. Lossona, L. Macairea, Y. Yanga. "Comparison of Colour Demosaicing Methods". *Advances in Imaging and Electron Physics* 162 (2010) 173-265.

IMAGE QUALITY

Image Quality Metrics

- Image quality metrics that matter most:
 - Dynamic Range
 - Noise
 - Tone
 - Focus
- Controllable camera parameters:
 - Exposure
 - Brightness
 - Contrast
 - White balance
 - Saturation
- Cheaper camera => fewer available settings

Auto-Everything: Machine Vision vs. Video

- Machine Vision:
 - Fewer auto-compensation settings
 - The ones available are basic
- Video:
 - Auto-compensation mechanisms
 - More sophisticated algorithms
 - Optimized for image quality:
 - Specific settings for tonal quality, tonal range, "warmth"

Dynamic Range

- Cameras have a narrow dynamic range:
 - Green box shows the dynamic range of the human eye
 - Red box shows the camera's dynamic range

DYNAMIC RANGE - 1,000,000,000:1 or 30 Stops			
Scotopic		Photopic	
	Mesopic		
	10-3 10-2 10-1 0 cd/m ²	uluuluuluuluuluu 10 ¹ 10 ² 10 ³	10 ⁴ 10 ⁵ 10 ⁶

Copyright © Sareesh Sudhakaran 2012

- What we see is not what the camera sees.
- An adaptable camera is much closer to the human eye
- Auto-compensation does this, and outdoor scenes need this!

Exposure

Controls the shutter speed of the camera

Under-exposed

Over-exposed

- Typical shutter speed on moving cameras: 1/1000 s
- Any slower causes motion blur on off-axis elements

Gain

- Controls the Sensitivity of the sensor
- Too high a gain setting results in excessive noise

Too much gain

Just right

White Balance

Controls the temperature of the white-point. Makes the image warmer or colder

Too cold

Too warm

- Frame-rate: Rate at which the camera can deliver frames to a collection PC
 - Depends on shutter speed, bandwidth, recording rate
- Machine Vision cameras
 - Are restricted by bandwidth
 - Must compete with other network traffic
- Video cameras
 - Utilize a special high-speed bus with a frame-grabber card
 - Can run as fast as the camera can generate frames

- Machine Vision cameras
 - Can be hardware-triggered
 - Synchronized over Ethernet to sub-millisecond
- Video cameras
 - Are free-running

Image from a Fugro Video Camera

Tugro

Driving into the Sun!

Specifications on RFPs

Typical

- Collection interval
- Pixel Count
- Field of View
- Format JPEG

What About?

- Number of Sensors
- F-Stop
- Lens Quality
- Auto Adjustments
- Compression of the JPEG Specification
- Quality Assurance

- More megapixels does not mean more quality
- More resolution does not mean more quality
- Three Sensors are better than One
- Smaller cameras typically mean
 - Smaller lens
 - Lower overall quality images
- More specifications should be used.....what did he just say....more specifications?

© Fugro 2013

Thank You!

- Acknowledgement
 - Co-Authors
 - Cyrus Minwalla
 - Hitesh Shaw

 Damion Orsi, P.Eng., PMP dorsi@fugro.com

